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Abstract
The isentropic relation from gas dynamics relates pressure, density and
temperature. The use of this relation may ease the hydrodynamic modelling
effort. Characteristic for the isentropic relation is the constant isentropic
exponent. The isentropic exponent is also in the case of plasmas a constant as
long as the ionization degree is between 5 and 80%. This constant is lower
due to the extra degree of freedom which comes with ionization in plasmas.
The occurrence of ionization means that plasmas are never isentropic. The
isentropic relation itself is therefore adapted here to include plasmas within its
concept. From the plasma isentropic relation a further extension is to include
viscosity and heating. It is found that all extra non-isentropic inclusions further
lower the (quasi-) isentropic exponent in the adapted isentropic relation.

PACS numbers: 51.10.+y, 52.25.Kn

1. Introduction

In gas dynamic theory it is common to use the isentropic relations, which relate pressure,
density and temperature to reduce the complexity of the hydrodynamic description. The
isentropic relation is valid under the condition that viscosity and heating of the considered gas
volume can be neglected. In situations where viscosity and heating play no significant role,
the isentropic relations are often used as a first approximation of the complex gas dynamical
systems.

The isentropic relations relating the pressure, p, or the temperature, T, and the mass
density, ρ, read

p

ργ
= C

T

ργ−1
= C ′ (1)

where C (and C ′) is a constant and γ is the so-called isentropic exponent, which is only a
function of how energy is distributed internally in the considered fluid, i.e. of the degrees of
freedom. Note that by determining expression (1) the relation for pressure versus temperature
is also determined.
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The isentropic exponent, characteristic for the isentropic relations, is a constant in gas
dynamic situations. In the case of plasmas, the isentropic exponent may become a function
of the ionization degree and deviations from local thermal equilibrium (LTE). Local thermal
equilibrium means that the electron temperature does not deviate from the heavy particle (i.e.
atoms and ions) temperature (so-called equi-thermal equilibrium) and that ionization does not
differ from Saha’s ionization–recombination equilibrium. However (as in the case of gases)
the isentropic exponent for atomic plasmas is constant as long as the ionization degree is
between 5 and 80% [1]. For most atmospheric plasmas which have an electron temperature
of about 1 eV, a sufficiently accurate estimation for the isentropic exponent of plasmas is 1.16
[1]. The isentropic exponent constant for plasmas is lower than for gases due to an extra
degree of freedom caused by ionization in plasmas.

In this paper the isentropic relation itself (not the characteristic isentropic exponent) is
investigated in order to have the same tool to describe plasmas and calorically perfect gases.
The plasma considered here consists of atoms, ions and electrons. Plasmas are not in LTE.
In order to stress the influence of ionization and the disequilibrium in energy balances, the
ionization degree α and the disequilibrium parameter θ for equi-thermal disequilibrium are
used. The ionization degree is defined as

α = ni

nh

(2)

in which nh, the heavy particles density, is equal to the sum of the atom density, na , and the
ion density, ni . The disequilibrium parameter θ is defined as

θ = T

Te

(3)

in which T is the heavy particle temperature and in which Te is the electron temperature.
Further, we will consider only singly ionized ions and make use of quasi-neutrality, i.e.

the ion density equals the electron density ni = ne.

2. Plasma thermodynamics

In this section we will consider plasmas along a streamline neglecting viscosity and heating.
In [1], the heat capacities (at constant pressure cp and at constant volume cV ) and the isentropic
exponent of a plasma γp are considered. From [1] it can be derived that

β = cp

cV

= γp

[
1 +

α(1 − α)

2θ + α(1 − θ)

]
(4)

and

cp − cV = (β − 1)cV = R

(
θ + α

θ

)

×
(

1 +
(β − γp)

βγp

[
β

(
5

2
+

Eion

kTe

)2

− γp

(
3

2
+

Eion

kTe

)2
])

. (5)

Note that in the case of a gas α = 0 and θ = 1. This yields

β = cp

cV

= γp = γ (6)

and

cp − cV = (γ − 1)cV = R. (7)
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Figure 1. The isentropic exponent ratio (the ratio of γ ∗ and γp) of argon plasmas with an electron
temperature of 1 eV. Theta is the temperature disequilibrium parameter defined in expression (3).

Let us define

δ = cp − cV

R
(8)

such that δ = 1 in the case of a gas.
The isentropic continuity equations written in differential form [2] can be combined to

dp = ρcp dT . (9)

While making use of β and δ as given in expressions (4) and (8), expression (9) can be written
as

(β − 1)

δ
cV

(
dρ

ρ
+

dT

T

)
= βcV

dT

T
. (10)

This yields for expression (9) adapted for a plasma that

p = Cργ ∗
(11)

where C is a constant and γ ∗ is defined as

γ ∗ =
(

δβ

(δ − 1)β + 1

)
. (12)

In the case of a gas γ ∗ = γ . Note that expression (11) is not the isentropic relation as
known from gas dynamics, i.e. expression (1) with γ replaced by the isentropic exponent for
plasmas γp.

Figure 1 shows the isentropic exponent ratio, i.e. the ratio of the plasma isentropic relation
coefficient (γ ∗) and the isentropic exponent for plasmas (γp taken from [1]), for argon plasmas
at Te ≈ 1 eV as a function of the ionization degree for several values of the disequilibrium
parameter θ . From figure 1 we conclude that for the ionization range 5–80% a good estimate
for the isentropic exponent ratio is 0.9, and that this ratio is roughly independent of θ .
The isentropic exponent ratio depends only weakly on the plasma composition and the
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electron temperature with respect to its behaviour as function of the ionization degree and
the disequilibrium parameter θ . The constant (the value 0.9 for argon plasmas at Te is 1 eV)
depends on the ratio of Eion and kTe.

In the limit that the electron temperature goes to zero, the isentropic exponent γ ∗ goes to
the value of the isentropic exponent for plasmas γp. The isentropic exponent γ ∗ is always less
than the isentropic exponent for plasmas γp.

Since expression (11) is derived from the expressions of conservation of mass, momentum
and energy, while neglecting viscosity and heating, we will call expression (11) the plasma
isentropic relation.

A very interesting consequence of expressions (10) and (11) is that

cp = βδ

β − 1
R = γ ∗

γ ∗ − 1
R (13)

something we will use in the next section.

3. General thermodynamics

Let us next consider the flow behaviour of a fluid flowing through a duct with different
cross-sections A = πr2 at the inlet and the outlet. Mass conservation in differential form
gives

dρuA = 0. (14)

The momentum balance in first order yields [3]

dp + ρu du +
ρu2

2
f

2

r
dz = 0 (15)

where z is the symmetry axis coordinate and f the dimensionless Fanning friction factor [4–8].
The Fanning friction factor is a function of the Reynolds number, Re

Re = 2ρur

µ
(16)

where µ is the dynamic viscosity. For laminar gas flows (Re < 2300) the dimensionless
Fanning friction factor is equal to [4–8]

f = 16

Re
. (17)

The Fanning friction factor expression is valid for any wall roughness since the heat loss in
laminar flow is independent of wall roughness [9].

Conservation of energy yields

cp dT + u du = dQ, (18)

where dQ is the rate of heating and T the (gas mixture or plasma) temperature.
Expressions (14), (15) and (18) consider the particles in the fluid as grouped in a volume.

The expressions take the total fluid into account integrated over the cross-section and no radial
dependences are assumed.

Combining expressions (15) and (18) a similar expression to (9) is found

dp + ρu2 f

r
dz + ρ dQ = ρcp dT . (19)

Similar to before, obtaining expression (10) from expression (9), expression (19) can be
written as (

dρ

ρ
+

dT

T

)
+

u2

RT

f

r
dz +

dQ

RT
= γ ∗

γ ∗ − 1

dT

T
(20)
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where expression (13) is used. Note that by defining the quasi-heat capacity S and heat flux �,

S = −dQ

dT
(21)

and

� = −κ
dT

dz
(22)

with κ the thermal heat conductivity coefficient, expression (20) becomes

dρ

ρ
=

(
1

γ ∗ − 1
+

u2

R

κf

r�
+

S

R

)
dT

T
. (23)

This yields the relation

p = Cργ ∗∗
(24)

with a new exponent

γ ∗∗ = 1 +

(
1

γ ∗ − 1
+

u2

R

κf

r�
+

S

R

)−1

. (25)

Heating and viscosity lower the (isentropic) exponent γ ∗∗ for plasmas as well as for gases,
since heating and viscosity introduce extra degrees of freedom. When viscosity and heating
are zero γ ∗∗ = γ ∗ (note the special case of a gas, no viscosity and adiabatic: γ ∗∗ = γ ∗ = γ ).

The viscosity term in expression (25) is roughly constant since at higher temperatures, an
increase in temperature results in a strong increase in velocity u as well as a severe decrease
in friction factor f (or in viscosity coefficient µ) [11, 12] since the ion contribution in the
viscosity term becomes dominant. At relative low temperatures an increase in temperature
increases the velocity as well as the viscosity coefficient, but these increases are less severe.
At extreme low temperatures the viscosity term can be neglected [11]. The heat capacity term
is also roughly constant as long as a change in temperature goes linear with a change in heat
addition.

As a consequence of expressions (23) and (24) the quasi-heat capacity c∗
p is given as

c∗
p = γ ∗∗

γ ∗∗ − 1
R = γ ∗

γ ∗ − 1
R + u2 κf

r�
+ S. (26)

4. Consideration

In gas dynamic theory it is common to use the isentropic relations, which relate pressure,
density and temperature to reduce the complexity of the hydrodynamic description. The
isentropic relation is valid under the condition that viscosity and heating of the considered gas
volume can be neglected. The isentropic exponent, characteristic for the isentropic relations,
is a constant in gas dynamic situations, and as long as the ionization degree is between 5 and
80% for atomic plasmas [1]. The isentropic exponent constant for plasmas is lower than for
gases due to an extra degree of freedom caused by ionization in plasmas.

However, since plasmas are always non-isentropic due to the occurrence of ionization,
the isentropic relation as used for gases (or gas mixtures) has been considered. The plasma
isentropic relation has been introduced as an adapted version of the isentropic relation from
gas dynamics. In this adapted version, viscosity and heating are still neglected but the relation
is not fully isentropic allowing for the inclusion of plasmas in the relation. When viscosity and
heating are also included the adapted plasma isentropic relation is found, which has a further
lowered isentropic exponent.
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To show the usefulness of the plasma isentropic relations we consider the cascaded arc of
[10]. This atmospheric argon plasma source is in disequilibrium θ ≈ 0.8–0.9 with a typical
electron temperature of 1 eV. The ionization degree of a cascaded arc with a straight plasma
channel is typically between 6 and 10%. Without estimating the quasi-heat capacity and the
heat flux, S and �, from experimental values, it can be deduced from expression (25) that

1 � γ ∗∗ � γ ∗.

With the help of figure 1, γ ∗ ≈ 0.9 × 1.16 = 1.044 (γp = 1.16 is taken from [1]) for the
ionization range 5–80%. Noting that the pressure over the cascaded arc drops typically a few
104 Pa (depending on the length of the arc), the plasma isentropic relation informs us that the
mass density ρ drops one order in magnitude over the cascaded arc while the temperature over
the arc does not change (much) at all. This is indeed in agreement with our experience.
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